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Abstract— Distributed self-organization algorithms for wireless
sensor (and actuator) networks must have low message complex-
ity from energy and bandwidth considerations. In this paper,
we present a novel approach for message-efficient clustering,
in which nodes allocate local growth budgets to neighbors. We
introduce two algorithms that make use of this approach. Unlike
the expanding ring approach [10], our algorithms do not involve
the initiator in each round, and do not violate the specified
upper bound on the cluster size at any time. We derive ana-
lytical performance bounds of our algorithms and also provide
performance results from simulations. The algorithms produce
clusters of bounded size and low diameter, using significantly
fewer messages than the expanding ring approach.

I. INTRODUCTION

Wireless sensor (and actuator) networks have critical appli-
cations in the scientific, medical, commercial, and military do-
mains. Examples of these applications include environmental
monitoring, smart homes and offices, surveillance, intelligent
transportation systems, and many others. As societal reliance
on wireless sensor networks increases, we can expect the size
and complexity of individual networks as well as the number
of networks to increase dramatically.

For many applications, we envision large static ad hoc
networks consisting of hundreds, thousands, or even millions
of inexpensive wireless sensor nodes that may be placed
either regularly or irregularly. Wireless sensor networks can
be exposed to highly dynamic and hostile environments, and
therefore, they must be tolerant to the failure of individual
nodes. Algorithms for wireless sensor networks must be dis-
tributed to prevent single points of failure, and self-organizing
for scalable deployment.

Wireless sensor networks are bandwidth- and energy-
constrained. Self-organization algorithms that minimize the
number of message transmissions (and receptions) can help
conserve energy and bandwidth. Protocols with low message
overhead are preferable in tactical wireless sensor networks,
since for example, statistical methods of cryptanalysis require
a large number of samples to be successful. Therefore, low
message complexity is a highly desirable property of self-
organization algorithms for wireless sensor networks.

†This work was supported in part by the National Science Foundation under
NSF CAREER grant ANI-0132802.

The autonomous set up of addressing and routing in a
large network requires the decomposition of the network into
connected clusters. Bounding the cluster size1 is a requirement
imposed by routing protocol complexity [5], [6], [8], [10].
Furthermore, resource constraints or specific network architec-
tures can impose limits on the cluster size. Thus, it is desirable
to develop distributed algorithms that can form bounded size
clusters. Moreover, the cluster sizes produced should be as
close as possible to the specified bound in order to limit the
total number of clusters. This can help the construction of a
flatter hierarchy for efficient routing.

Despite the importance of the bound on cluster size, clus-
tering algorithms so far have treated size as a secondary
constraint, to be optimized in a post-processing phase [2], [10].
Ramamoorthy et al. apply an expanding ring approach [10],
in which the cluster depth is progressively relaxed until the
desired cluster size is exceeded. Additional messages are used
to selectively drop excess nodes picked up in the outermost
layer. As shown in the sequel, this approach allows temporary
violations of the bound and often leads to the transmission
of an excessively large number of messages. More recently,
Banerjee and Khuller [2] proposed new algorithms for con-
structing overlapping clusters of bounded size. Their algo-
rithms use a post-processing phase to enforce the size bound.

Other work in this area has focused on algorithms to achieve
sparse, low-diameter network decompositions [1], [7] based on
the rationale that a low diameter leads to low end-to-end delay.
However, these algorithms can allow the cluster size to be
violated arbitrarily. This is especially true in densely connected
networks. For example, consider the extreme case of a clique
network in which the desired cluster size is small compared
to the network size. Every cluster in this case will have unit
diameter, but the size bound can be violated arbitrarily.

In this paper, we propose a novel approach for message-
efficient clustering based on the concept of budget allocation.
Our novel approach relies on allocating growth budgets to
neighbors. This approach significantly reduces the number of
messages exchanged and allows the cluster to grow based on
local decisions rather than involving the initiator at each round.

1The size of a cluster is the number of nodes that it includes.
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Fig. 1. Distributed algorithms for bounded size clustering.

We introduce two algorithms making use of this approach. The
first algorithm called Rapid produces clusters of bounded size.
This algorithm uses few messages, but has a poor worst-case
analytical performance. The second algorithm called Persistent
persistently tries to produce a cluster of the specified bound if
possible. Simulations show that this algorithm performs well
on average when building a single cluster.

Through analysis and simulation, we demonstrate that our
algorithms are significantly more efficient in terms of message
complexity than the expanding ring search algorithm of [10].
In our analysis scenarios that were restricted (for tractability)
to the construction of a single cluster within a network, the
proposed algorithms have a worst-case message complexity
that is polynomial in the specified cluster size, while the worst-
case complexity of expanding ring search is exponential.

The proposed algorithms do not violate the cluster size
bound at any time. They generally produce flat rather than
deep clusters 2. This is advantageous because flat clusters lead
to smaller end-to-end delays.

This paper is organized as follows. In Section II, we
describe the proposed Rapid and Persistent algorithms and
apply them to network decomposition of wireless sensor
networks. We present a performance analysis of the algorithms
in Section III, followed by simulation results in Section IV.
The last section of this paper is devoted to concluding remarks,
followed by bibliographic references at the end.

II. ALGORITHMS

In this section, we describe two novel algorithms to pro-
duce clusters of bounded size – Algorithm Rapid and Al-
gorithm Persistent. We also describe the Expanding Ring
algorithm [10], which we use as a baseline for performance
evaluation. We note here that an arbitrary network cannot
always be decomposed into non-overlapping clusters of a
particular size. For example, with a star topology, once the
hub node is assigned to a cluster, then all unclustered nodes
will end up in single node clusters.

2It is possible to build clusters of a bounded size by using a depth-first-
search (DFS) algorithm, but in large networks, this can result in deep clusters.

We provide the definitions of some terms used in this paper.
We consider a network G = (V, E) with |V | = n nodes and
|E| = m edges. Nodes in G can send (and receive) messages
to (from) its neighbors. Every node v ∈ V has a unique
identity ID(v). Each node initially knows only its own identity
and the identities of its immediate neighbors in G.

A cluster is a connected component of the original graph G
together a node designated as the initiator in the cluster and
a spanning tree (a by-product of clustering) [1]. An initiator
v0 ∈ V is a node that is permitted to initiate the process of
clustering by sending messages. The size of a cluster is the
number of nodes belonging to it. The bound on the maximum
cluster size is B, where B is smaller than n. The depth of the
cluster is the height of the associated spanning tree.

A. Algorithm Expanding Ring

Ramamoorthy et al. present an algorithm for bounded
size clustering based on an expanding ring search [10]. The
Expanding Ring algorithm proceeds in rounds starting with
a maximum hop limit of 1. In each round of the algorithm,
the initiator sends messages with a scope set to one hop more
than the previous round. At the end of each round, the initiator
knows the total number and IDs of nodes that are added in the
last layer, that is, nodes at a distance equal to the maximum
hops for that round. Eventually, after a few rounds, the cluster
size bound will be exceeded. For example, in Figure 1(a),
a bound of 8 is exceeded at 2 hops resulting in a cluster
containing 10 nodes.

The initiator then sends another message containing a list of
(arbitrary chosen) nodes in the last layer to be dropped from
the cluster in order to achieve the bound. This message is then
forwarded successively to all children.

B. Algorithm Rapid

In this algorithm, the initiator is assigned a budget of B, of
which it accounts for itself and evenly distributes B−1 among
its neighbors by sending a message to each one of them. An
arbitrary subset is chosen if there are more neighbors than
the budget. The neighbors that receive the message, account
for themselves and distribute the remaining among all their



neighbors except the parent. The messages propagate until they
reach a stage where the budget is exhausted. This algorithm
is illustrated in Figure 1(b) in which a bound of 8 results in
forming an actual cluster of size 6. Note that the initiator (node
A) allocates a budget of 3 to a neighbor (node B) which is a
leaf and can add only 1 node to the cluster.

Each node that receives a message sends an acknowledg-
ment to its parent when either the budget is exhausted or it has
received acknowledgments from all its children. The algorithm
terminates when the initiator receives acknowledgments from
all the neighbors it sent a message to. The acknowledgments
can be used to convey the size and depth of the subtree and
the maximum hop count reached. The initiator can use this
to determine the size and depth of the cluster. Furthermore,
by including hop count information in the messages and
acknowledgments, a modified algorithm can limit the depth
of the cluster, but this can affect the cluster size achieved.
C. Algorithm Persistent

The Rapid algorithm presented in the previous section has
a low message complexity, at most 2(B − 1) messages (see
Section III). However, in the worst-case it can produce clusters
that are very small when compared to the desired bound.
Decomposing a network into a large number of small clusters
can lead to inefficient routing.

Algorithm Persistent that we present next, uses more mes-
sages than Algorithm Rapid to significantly improve the worst-
case behavior, that is, the smallest cluster size produced.

Using the Persistent algorithm, the initiator is provided
a budget of B, of which it accounts for itself and evenly
distributes B − 1 among its neighbors via messages. An
arbitrary subset is chosen if there are more neighbors than the
budget. The neighbors which receive the message, account
for themselves and distribute the remaining among all their
neighbors except the parent. The messages propagate until they
reach a stage where the budget is exhausted.

In this algorithm, each node that receives a message does
not send an acknowledgment to its parent immediately on
receiving acknowledgments from all its children. It computes
the size of the subtree and compares it to the budget allocated
to it. It distributes the shortfall among its neighbors that either
were not explored previously or met all previously allocated
budgets. When either the budget is met or when further growth
is not possible, it returns an acknowledgment to its parent.
The algorithm terminates when the initiator determines that
the bound has been met or when no further growth is possible
(for example, there are not enough nodes adjacent to the cluster
that are free to join this cluster.) This algorithm is illustrated
in Figure 1(c). In this example, node A first allocates a budget
of 3 to node B. Node B returns an acknowledgment to node A,
with a budget consumption of 1. Node A then equally allocates
the surplus budget of 2 among its other children (C and D).

In the presence of a single initiator, Algorithm Persistent
produces a cluster of the specified bound. When a cluster of
the specified size cannot be constructed (because not enough
unclustered nodes are available), it attempts to build the largest
cluster possible.

D. Network decomposition

The three algorithms described above, can each produce a
single cluster of bounded size. We can apply any one of them
to perform network decomposition into clusters of bounded
size using the simple procedure described below.

Each node that comes up waits for clustering messages
from its neighbors. When a timeout (randomly chosen within a
configured interval) occurs, the node becomes an initiator itself
and invokes one of the three clustering algorithms. The process
continues until all the nodes in the network are clustered.

III. ANALYSIS

In the context of wireless sensor networks with energy-
limited and bandwidth-limited devices, message complexity is
the metric of choice to evaluate the efficiency of an algorithm.
In this section, we analyze the message complexity of the three
algorithms when applied to both the construction of a single
cluster and network decomposition.

In Section III-A, we show that in the presence of a single
initiator the Rapid and Persistent algorithms have a worst-case
message complexity that is polynomial in the specified bound.
The Expanding Ring algorithm has a worst-case message com-
plexity that is proportional to the size of the entire network,
and this can be very large.

In Section III-B, we show that the Rapid algorithm can
produce very small clusters in the worst case, even with a
single initiator. We show that in such a case, the other two
algorithms produce a cluster of size equal to the specified
upper bound.

In Section III-C, we analyze the message complexity of
the algorithms when applied to network decomposition. For
tractability of analysis, we restrict ourselves to clique and
ring topologies, which represent dense and sparse topologies
respectively. On a clique topology, we show that the average-
case message complexity of the Persistent algorithm is sig-
nificantly lower than that of the Expanding Ring algorithm,
although both produce the same number of clusters. On a
ring topology, the two algorithms have similar asymptotic
message complexity, and produce the same number of clusters.
From this analysis, we can expect that the Persistent algorithm
will require fewer messages on average than the Expanding
Ring algorithm for the decomposition of dense networks.
Simulations presented later validate this conclusion.

For the purpose of analysis, we assume that during the
clustering process: (i) the graph is connected, (ii) there are
no changes in the network topology, and (ii) no messages are
lost during clustering.

A. Message Complexity for Creating a Single Cluster

Lemma 1: Algorithm Rapid uses O(B) messages.
Proof: Each message sent by a node to one of its neighbors

implies that the total budget is reduced by at least 1. Since the
initial budget is B, there will be at most B − 1 messages (or
2(B − 1) messages, if one includes the acknowledgments).

Lemma 2: Algorithm Persistent has a worst-case message
complexity that is polynomial in B.



Proof: The budget can be reallocated at most B times
by each node on the spanning tree. So the total number of
messages on each link of spanning tree is O(B) in the worst-
case. Each node in the spanning tree could have sent messages
to at most O(B) neighbors that have not been included in the
spanning tree as a child of the given node. Again the number
of messages wasted is O(B2). Thus the worst-case message
complexity of Algorithm Persistent is polynomial in B.

Lemma 3: Algorithm Expanding Ring uses O(n) messages.
Proof: In any round in which the cluster size is less than

B, the total number of messages exchanged is polynomial in
B. In the worst case, all nodes in the network may be sent
messages in the last round. Therefore, the worst-case message
complexity of expanding ring search is O(n).

From the lemmas above, we see that the proposed Rapid
and Persistent algorithms both have message complexity that
is polynomial in B. The Expanding Ring algorithm has a
complexity that is not related to B and can be very large
(e.g. n = 2B).
B. Cluster Size with Unique Initiator

Lemma 4: Algorithm Rapid produces a cluster of size b ≤
B.

Proof: It is easy to see that Algorithm Rapid produces a
cluster of size b ≤ B. At each stage, the total budget allocated
to the node and its neighbors by the algorithm is no more
than the budget available at that stage. Since the initiator has
a budget of B, the size of the cluster can not exceed B.

Theorem 1: With a unique initiator, the lower bound on
the worst-case cluster size produced by Algorithm Rapid is
eW (log B) where W is the Lambert-W function3.

Proof sketch: Suppose the worst-case cluster size produced
is T (B) ≤ B. In order to achieve the worst case, the algorithm
must achieve the minimum growth possible at each stage
(namely 1), and waste the maximum possible fraction of the
total budget available at that stage.

Clearly, each node in the worst-case cluster has no more
than T (B) neighbors and at least one neighbor which will be
able to use the budget, since G is connected and n > B.

In the worst case, the initial budget B is reduced by a factor
of T (B) at each stage. With a growth by 1 node at each stage
and an initial budget of B, the total number of steps does
not exceed T (B). Since the budget must be exhausted after
T (B) stages, this leads to the inequality: B

T (B)T (B) ≤ 1. The

solution for f(x)f(x) = x is f(x) = eW (log x) where W (x) is
the Lambert W-function. Thus T (B) ≥ eW (log B).

Lemma 5: Algorithm Persistent produces a cluster of size
B if the initiator is unique.

Proof: Each node (including the initiator) recursively real-
locates the unutilized budget until either the entire budget is
exhausted or no more growth is possible. Since the graph is
connected, is larger in size than the cluster size bound, and
no nodes are unavailable to this initiator since it is unique,
Algorithm Persistent produces a cluster of size B.

3The Lambert-W function is the inverse of the function f(W ) = WeW ,

and has the series expansion W (x) =
∑∞

n=1

(−n)n−1

n!
xn.

Lemma 6: Algorithm Expanding Ring produces a cluster of
size B if the initiator is unique.

Proof: It is easy to see that Algorithm Expanding Ring
produces a cluster of size B, since it recursively expands
the cluster by one hop until either the cluster size equals or
exceeds the bound, and then sheds the excess nodes from the
last layer if necessary.

From the above discussion, we see that the Rapid algorithm
may produce very small clusters in the worst case, even with
a unique initiator. In such a case, the other two algorithms
produce a cluster of size equal to the specified upper bound.

C. Message Complexity of Network Decomposition

We analyze the message complexity of network decom-
position of two regular topologies – clique and ring – that
represent extremes of sparse and dense topologies respectively.
The analysis provides insight into the message complexity of
the algorithms both in sparsely and densely-connected graphs.

The analysis in the case of a general graph is difficult. The
actual set of initiators and the specific sequence in which
they become active will affect the number of clusters, the
size of individual clusters, and the total number of messages
used. Therefore, in order to simplify the message complexity
analysis (and to isolate the effects of implementation details),
we assume that only one initiator is active at any given time.
In the case of the ring, we also assume that an unclustered
neighbor of the last cluster is chosen as the next initiator.
Furthermore, the regularity of the ring and clique topologies
makes the choice of initiators less critical to the performance
analysis. Our simulation-based comparisons (in Section IV)
extend to other general topologies and cases in which multiple
initiators are concurrently active.

In these two topologies, both the Persistent and Expanding
Ring Algorithm produce the same number of clusters. We have
computed the worst-case and average-case message complex-
ity, which are summarized in Table I. Our analysis shows
that on a clique topology, the Persistent algorithm requires
significantly fewer messages on average than the Expanding
Ring algorithm. On a ring topology, the two algorithms have
the same message complexity.

IV. SIMULATION RESULTS

In this section, we compare the performance of the Rapid,
Persistent, and the Expanding Ring algorithms using the ns-
2 simulator [9]. We consider two cases: (i) when only one
initiator is present and a single cluster is produced, and (ii)
network decomposition.

TABLE I

MESSAGE COMPLEXITY OF NETWORK DECOMPOSITION IN CLIQUE AND

RING TOPOLOGIES OF SIZE n.

Clique Ring
Average case Worst case Average and Worst case

Persistent O(n log n) O(n2) O(n)
Exp. Ring O(n2) O(n2) O(n)
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Fig. 2. Performance of the algorithms with bound = 32 for different α. Each
point is averaged over 10 different 200-node random graphs.

We used the GT-ITM tool [3] to generate random graphs
based on the Erdos-Renyi model with edge probability α
chosen from the set {0.0177, 0.0354, 0.0531, 0.0708, 0.0885}.
The capacity and delay for all links were set to 1Mb/s and 10
ms respectively.
A. Single cluster performance

First, we consider the case of one initiator producing a
single cluster. The node numbered 0 was arbitrarily chosen
as the initiator and was given a size bound chosen from
the range {2, 4, 8, 16, 32, 48, 64, 80, 96, 112, 128}. We ran the
three algorithms – Rapid, Persistent, and Expanding Ring – on

the graphs, and compared the size and depth of the clusters
produced, and the number of messages exchanged. Each data
point is computed by averaging the results from 10 different
200-node graphs for each given α.

Figure 2 shows the effect of graph density on the perfor-
mance of our algorithms. We have plotted the results for a
cluster size bound of 32, and we have noted a similar trend
with other cluster size bounds. The proposed algorithms use
far fewer messages than the Expanding Ring algorithm (a
difference of almost an order of magnitude in some cases). We
can make two observations as the graph density increases: (i)
The number of messages required by our algorithms increases
only marginally; in contrast, the number of messages required
by the baseline Expanding Ring algorithm increases rapidly.
(ii) The depth of the clusters produced by our algorithms
approaches the best possible, matching those produced by the
Expanding Ring algorithm.

We note that the clusters produced by the Rapid algorithm
are larger than the analytical worst-case size, and are quite
close to the specified bound.

B. Network decomposition performance

In this section, we consider the case of network decom-
position using the three algorithms. The size bound was
chosen from the range {8, 16, 32, 64}. We compare the three
algorithms using the number of clusters produced, the average
cluster size and the number of messages exchanged. Each data
point is computed by averaging the results from 100 different
400-node graphs for each given α.

Figure 3 shows the performance of our algorithms when
applied to network decomposition for different size bounds
in networks with edge probability α = 0.0354. We see that
the Rapid and Persistent algorithms continue to use far fewer
messages in comparison to the expanding ring algorithm. The
Persistent algorithm is similar to the Expanding Ring in terms
of the number of clusters (and the average cluster size). Even
though the Rapid algorithm retains its message efficiency, it
produces a large number of clusters.

Figure 4 shows network decomposition performance with a
size bound of 32 for different graph densities. As expected, the
simple Rapid algorithm produces a large number of clusters
when compared to the other two algorithms. As the den-
sity increases, the number of messages required for network
decomposition by both the Rapid and Persistent algorithms
increases marginally; with the Expanding Ring algorithm the
number of messages required increases rapidly as the density
increases. At the same time, the Persistent algorithm produces
roughly the same number of clusters as the Expanding Ring
algorithm.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented novel algorithms that produce
clusters of bounded size in which nodes allocate local growth
budgets to neighbors to avoid involving the initiator in each
round; they do not violate the specified upper bound on the
cluster size at any time. The proposed algorithms also produce
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Fig. 3. Network decomposition performance for different size bounds. Each
point is averaged over 100 different 400-node random graphs.

clusters of low diameter, using significantly fewer messages
than the expanding ring approach. The benefits increase with
increasing network density.

With a unique initiator, Algorithm Rapid uses the least
possible number of messages and guarantees clusters that
do not exceed the specified bound, but it can produce very
small clusters in the worst-case. Algorithm Persistent uses
more messages, but produces a cluster of specified size when
possible (i.e. the number of unclustered nodes in the connected
component of the initiator equals or exceeds the bound).

When applied to network decomposition, Algorithm Persis-
tent uses significantly fewer messages than the expanding ring
approach, while producing a comparable number of clusters
(and average cluster size) as the expanding ring approach.
Although Algorithm Rapid continues to be message-efficient,
it produces a large number of clusters.

We envision that the proposed algorithms can achieve
efficient bootstrap of the network organization into clusters
of bounded size and low diameter. Overlays to optimize for
various criteria can be used in conjunction with our algorithms.
Our approach is consistent with, and complementary to, ap-
proaches such as LEACH [4], in which different nodes become
initiators in different rounds for sharing the energy load.
Initiator rotation could also allow for recovery in the event
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Fig. 4. Network decomposition performance with bound = 32 and different
α. Each point is averaged over 100 different 400-node random graphs.

of failed nodes. In future work, we will consider the effects
of timeouts and initiator rotation strategies on performance.
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